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Abstract 

The standard errors of the 2 most widely used population-invariance measures of equating 

functions, root mean square difference (RMSD) and root expected mean square difference 

(REMSD), are not derived for common equating methods such as linear equating. Consequently, 

it is unknown how much noise is contained in these estimates. This paper describes 2 methods 

for obtaining the standard errors for RMSD and REMSD. The delta method relies on an 

analytical approximation and provides asymptotic standard errors. The grouped jackknife 

method is a sampling-based method. Both methods were applied to a real data application. The 

results showed that there was very little difference between the standard errors found by the 2 

methods. 
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Introduction 

Test equating methods are used to produce scores that are interchangeable across 

different test forms. Lord (1980) and others (see Kolen & Brennan, 2004, for an overview) state 

several requirements for equating. One of these requirements is the population invariance 

requirement, which states, “The choice of (sub) population scores of tests X and Y should not 

matter. In other words, the equating function used to link the scores of X and Y should be 

population invariant” (Dorans & Holland, 2000, p. 28). As discussed by Dorans (2003), 

population invariance is not only important in and of itself, but it also plays a key role in another 

equating requirement, the equity requirement, which states, “It ought to be a matter of 

indifference for an examinee to be tested by either one of two tests that have been equated” 

(Dorans & Holland, p. 28). In short, population invariance and equity are interrelated, and equity 

in equating cannot be achieved if population invariance does not hold. That is, the tests can only 

meet the equity requirement and be equatable if it is not only irrelevant which test (of those 

being equated) the examinee takes, but also which (sub)population of scores is used to obtain the 

equating function. 

Dorans and Holland (2000) proposed using two measures to determine if the population-

invariance requirement is met. One measure is the root mean square difference (RMSD), which 

is defined as the RMSD between the subpopulation linking functions and the overall linking 

function. That is, if scores y on test Y (i.e., the new form) are equated to scores x on test X (i.e., 

the old form) on a target population of examinees P, then 

( ) ( )
2

RMSD( )
c P Pc

c

XP

w e y e y

y
σ

⎡ ⎤−⎣
=

∑ ⎦ , (1) 

where Pce  is the equating function for subpopulation Pc (c = 0, 1, 2, …, C – 1) in population P, 

Pe  is the equating function for the overall population P, cw  is the weight assigned to 

subpopulation Pc, and XPσ  is the standard deviation of X for population P. (With some abuse of 

notation, X and Y denote both the test and the random variable representing the score on the test 

in this example.) 
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The RMSD is interpreted as an effect size is (Dorans & Holland, 2000). Specifically, it is 

the amount of invariance of the linking function for subpopulation c to the overall linking 

function. So, a value of .15 for RMSD(y), say y = 80, is interpreted as an RMSD of 15% of the 

standard deviation of test X in P in the linking functions at score 80 of test Y. 

Another measure of population invariance is the root expected mean square difference 

(REMSD), which is defined as a summative measure of the values of the RMSD(y) 

( ) ( )
2

REMSD
c P P Pc

c

XP

w E e Y e Y

σ

⎧ ⎫⎡ ⎤−⎨ ⎬⎣⎩
=

∑ ⎦ ⎭ , (2) 

where {}PE ⋅  is the expected value over Y . 

The REMSD is interpreted similarly to the RMSD. For example, if REMSD = .30, then 

the RMSD in the linking functions across the scores of test Y is, on average, 30% of the standard 

deviation of test X in P. 

The extent to which equating functions are population-invariant is commonly addressed 

in terms of differences that matter (DTM), the differences in equated scores that are greater than 

would be corrected for by the score rounding that occurs before score reporting (Dorans & 

Feigenbaum, 1994). The DTM criterion is an indication of practical, rather than statistical, 

significance of equating function differences (see von Davier and Wilson, 2006, for a discussion 

of the various criteria for investigating population-invariance indices). If the population-

invariance requirement is met, then both the RMSD and REMSD should be lower than the 

standardized DTM (SDTM), which is the DTM divided by the standard deviation of the old form 

score (von Davier & Wilson; Dorans & Feigenbaum). This approach is illustrated in recent 

papers by von Davier, Holland, and Thayer (2004b); Dorans, Holland, Thayer, and Tateneni 

(2003); and Yang, Dorans, and Tateneni (2003). 

When evaluating the RMSD and REMSD, their magnitude is not all that matters. 

Information regarding the accuracy of the population invariance estimates is a valuable source of 

information as well. It tells us the degree to which we can trust the estimates of the RMSD and 

REMSD when deciding whether or not an equating function is fair and population-invariant. 

That is, are the estimates close to their population values, or is there substantial noise in the 
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estimates? One way to answer this question is to examine the standard errors (i.e., the noise) of 

the RMSD and REMSD. Little research has been conducted in this respect. A notable exception 

is Moses (2006), which applied the delta method to obtain the asymptotic standard errors for the 

kernel equating (KE) method in an equivalent-group (EG) equating design. 

A first goal of this paper is to derive the asymptotic standard errors of the RMSD and 

REMSD for the linear equating method in the EG design. Even though the linear equating 

method can be seen as a limiting case of the KE method, and so in principle the results of Moses 

(2006) could be used, we think it is worthwhile to present the derivations separately for the 

widely used linear equating function. As in Moses (2006), the standard errors are derived by the 

delta method. 

A second goal of this paper is to present the sampling-based grouped jackknife method 

(Efron, 1982; Efron & Tibshiriani, 1993) as an alternative way of estimating the standard errors 

of the RMSD and REMSD. A main advantage of sampling-based methods is that no complex 

derivations are involved. Even for the relatively simple case of linear equating in the EG design, 

the analytical derivations become quite tedious using the delta method. If the results of the 

jackknife method were close to the results of the delta method, the former could considered to be 

a viable alternative to the delta method for computing the standard errors of the RMSD and 

REMSD in more complex designs. 

The remainder of the paper is organized as follows. After a short review of the linear 

equating method, the delta method and the grouped jackknife technique for obtaining the 

standard errors of the RMSD and REMSD are described. For ease of exposition, the methods are 

described for the case of two subpopulations, but the results can be generalized to more than two 

subpopulations in a straightforward way. Subsequently, both methods are illustrated with a real 

data application. The effect of sample size is investigated in the following section. Conclusions 

are drawn in the last section. 

The Linear Equating Method 

In the linear equating method, Y is equated to X scores using a linear equating function. 

For each subpopulation c, the equating function is 

( ) (XPc
P XP Yc c

YPc
e y y )Pc

σ
μ

σ
= + − μ , (3) 
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where XPcμ and XPcσ are the mean and standard deviation of X in subpopulation c, and YPcμ and 

YPcσ  are the mean and standard deviation of Y in the subpopulation. 

The population linear equating function is obtained by replacing the subpopulation means 

and standard deviations with their population counterparts (denoted without the subpopulation 

subscript c): 

( ) (XP
P XP

YP
e y y )YP

σμ
σ

= + − μ , (4) 

In practice, the (sub)population means and standard deviations are unknown, and linear 

equating proceeds by evaluating (3) and (4) in the estimated means and variances. 

Asymptotic Standard Errors 

Asymptotic standard errors can be derived for the RMSD and the REMSD of the linear 

equating function in the EG design using the delta method (Bishop, Feinberg & Holland, 1975; 

Kendall & Stuart, 1977). The delta method is an analytical method that can be summarized by 

saying that, if a vector of parameter estimates π̂  is asymptotically normally distributed (such as 

maximum likelihood estimates under fairly general conditions), then a smooth function f of these 

parameter estimates is also asymptotically normally distributed, with asymptotic variance-

covariance matrix 

( )( ) ( ) ( ) ( )ˆVar ff ′≅ J J fπ π π πΣ , (5) 

where ( )fJ π  is the Jacobian (i.e., the matrix of the first derivatives of the smooth function f 

with respect to the components in π ). In practice, the Jacobian is evaluated at the maximum 

likelihood estimates of π . 

For the linear equating function in the EG design and in the case of two subpopulations 

P0 and P1, the components of the vector parameter π  are the means and variances of the two 

variables X and Y in each of the two subpopulations, that is 

( 2 2 2
0 0 1 10 0 1

, , , , , , ,X Y X Y )2
1X Y Xμ σ μ σ μ σ μ σY
′

=π , (6) 
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and the role of the function f in (5) above is played by the RMSD and REMSD indices for the 

linear equating function. The entries for ( )fJ π  are given in the appendix. 

Σ  is the 8 × 8 variance-covariance matrix of the vector parameter π and can be written 

as 

( )
( )

( )
( )

0

0

1

1

Var
Var

Var
Var

X

Y

X

Y

π
π

π
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠= ⎜ ⎟⎛⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0
0

0
Σ

0
0

0
⎞

. (7) 

The off diagonal contains 0 matrices because we assumed that the subpopulations are partitions 

of P and that the groups were randomly drawn from P. ( )Var Xcπ  and (Var Ycπ )  are the 

covariance matrices of the components of the parameter π for subpopulation Pc for tests X and Y, 

respectively. More precisely, these matrices are represented as 

( )
( ) ( )

( ) ( )
2

2

Var Cov ,
Var

Cov , Var

X X Xc c c
Xc

XX Xcc c

μ μ
π

σ μ σ

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟
⎝ ⎠

2

σ
⎟ , (8) 

( )
( ) ( )

( ) ( )
2

2

Var Co ,
Var

Cov , Var

Y Y Yc c c
Yc

YY Ycc c

vμ μ
π

σ μ σ

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟
⎝ ⎠

2

σ
⎟ . (9) 

The expressions for the entries for the matrices in (8) and (9) can be found in Kolen (1985; Table 

2, estimates for the non-normal case). 

The standard errors of the RMSD and REMSD are the square root of the variance. 

However, conditions for applying the delta method may not be fulfilled everywhere because the 

RMSD (REMSD) is not differentiable at 0, its value under the null hypothesis. This can be seen 

in the entries of ( )fJ π , where the RMSD (REMSD) appears in the denominator. Note that the 

delta method requires that the equating functions be continuous and differentiable almost 

everywhere (Rao, 1973). The RMSD and REMSD functions are differentiable except on some 
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finite points with total probability of 0. This means that this requirement of the delta method is 

actually met in this situation. 

Sampling-Based Standard Errors 

Standard errors for RMSD and REMSD can also be obtained using the grouped jackknife 

method. Because the method is sampling-based, it can be easily generalized beyond the EG 

equating design and the linear equating functions. 

Suppose that one is interested in the standard error of a statistic T computed on a sample 

of size N, but the reference distribution of T is unknown. Alternatively, the reference distribution 

of T may be known asymptotically, but N may not be large enough to rely on an asymptotic 

result. In our case, the RSMD and REMSD play the role of T. 

The grouped jackknife technique is, like the bootstrap, a sampling-based technique that 

can be used to obtain standard errors for a statistic T whose reference distribution is unknown. In 

sampling-based techniques, multiple samples are drawn from the original dataset, T is estimated 

in each of these samples, and the variation of these estimates over the samples is used to 

approximate the true standard error of the T (Efron, 1982; Efron & Tibshirani, 1993). 

In the bootstrap technique, samples of size N are drawn with replacement from the 

original sample, whereas in the grouped jackknife method, g groups of size h, with N g= h , are 

drawn without replacement from the original dataset. That is, the sample is randomly split into g 

groups of size h. Grouped jackknife standard errors are then obtained as follows: 

1.   Compute the statistic of interest, iT  for the ith group (i = 1, …g), which is the total 

group with the ith block of h observations removed; and 

2.   Calculate the variance of the estimator as 

( 2

1

1Var( )
g

i
i

gT T
g =

−
= ∑ )T− , (10) 

where 
1 TiT
g

= ∑ . (11) 

In this report, the statistics of interest are the RMSD and REMSD. 

The larger the number of groups g that is chosen, the more precise the estimate of the 

standard error will be, but computation time will increase as well. 
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As was the case for the delta method, conditions for applying the jackknife method may 

not be fulfilled everywhere due to the fact that the RMSD is not differentiable at 0, its value 

under the null hypothesis. 

In the next section, both the delta and grouped jackknife methods for obtaining the 

standard errors of the RMSD and REMSD are applied to a real data set. 

Real Data Application: A Professional Licensure Study 

The data consisted of two randomly equivalent samples (i.e., an EG design) that took one 

of two forms (X and Y) of a professional licensure examination (consisting of 40 dichotomously 

scored items). In the operational administration, Forms X and Y were spiraled to achieve 

randomly equivalent samples. For the purposes here, the subpopulations of interest were chosen 

to be males and females. Examinees who did not provide their gender were removed from the 

data. Table 1 provides the descriptive statistics of the final data. As shown, slightly more 

examinees took Y than X, and roughly four times more females than males took each form. 

In general, Forms X and Y have similar negatively skewed distributions (Figures 1 and 2), 

but Form Y was slightly easier than Form X. For both forms, males performed slightly better than 

females. 

Table 1 

Descriptive Statistics for the Raw Scores of Forms X and Y 

Form Group N Mean 
Std. 

dev. 
Minimum Maximum Skew Kurtosis 

X Female 4,221 29.16 7.17 6.00 40.00 -0.64 -0.29 

 Male 1,186 30.25 7.12 6.00 40.00 -0.86 0.11 

 Total 5,407 29.40 7.17 6.00 40.00 -0.68 -0.23 

Reliability .88       

Y Female 4,250 30.47 7.27 4.00 40.00 -0.89 0.03 

 Male 1,139 31.50 7.07 8.00 40.00 -1.01 0.34 

 Total 5,389 30.69 7.24 4.00 40.00 -0.91 0.09 

Reliability .90       
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Figure 1. Raw score frequencies on X. 
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Figure 2. Raw score frequencies on Y. 
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As illustrated in Figure 3, for scores on Y that are less than 22, the equating function for 

males was slightly lower than the equating functions for females and for the total group (which is 

dominated by females). For scores at or above 22, the differences between equating functions 

were small. As can be seen in Figure 4, the RMSD never exceeded the SDTM. The RMSD was 

never larger than 0.05, whereas the SDTM was 0.07 (SDTM DTM/ .5 / 7.17 .07Xσ= ≈ ≈ ). The 

REMSD (not shown) was also small, with a value of 0.01. 
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Figure 3. Difference in equated scores between males and total group ( )0e e−P P  and 

females and total group ( 1e e−P P )  equating functions.  

Based on the estimated values of the RSMD and REMSD, the equating function is likely 

to be interpreted as population-invariant. The confidence with which this conclusion can be 

drawn based on the estimated RMSD and REMSD depends to a large degree on how accurate 

these estimates are. This brings us to the standard errors of the two measures of population 
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invariance. More specifically, confidence intervals can be constructed based on the standard 

errors. If the DTM is larger than the upper bound of the confidence interval of the RMSD or 

REMSD, the equating function can be viewed as population-invariant (at a particular score point 

for the RMSD). On the other hand, a DTM that is smaller than the upper bound of these 

confidence intervals casts some doubt on the population invariance of the equating function, 

even if the actual estimated RMSD or REMSD is smaller than the DTM. 
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Figure 4. RMSD for the linear equating function.  

Standard errors were computed with the two methods presented in this report: the delta 

method, which provides asymptotic standard errors; and the grouped jackknife method, which is 

a sampling-based method. For the latter, results in this section are based on g = 100 jackknife 

groups. This choice for g resulted in fairly stable estimates of the standard errors that could be 

computed in a reasonable time (less than a minute). With respect to the REMSD, the asymptotic 

standard error is very similar to the sampling-based standard error, with a rounded value of 0.02 
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for both methods  With an SDTM of 0.07 and an estimated REMSD of 0.01, we can be rather 

confident that the true REMSD is smaller than the SDTM and therefore that the equating 

function is population-invariant over the whole range of the scores. 

The asymptotic and sampling-based standard errors for the RMSD are displayed in 

Figure 5. Both methods give very similar standard errors that range between .01 and .10, where 

the absolute difference between the standard errors is never larger than .01. Note that for both 

methods, the estimated standard errors show a sudden dip in the score range 27 to 30. This may 

be because the RMSD becomes very small in that range (see Figure 4). As mentioned before, the 

RMSD is not differentiable at 0, which is a regularity condition for both methods. Contrary to the 

results for the REMSD, taking into account the standard errors for the RMSDs casts some doubts 

on the population invariance of the equating function, because the DTM of 0.07 is smaller than 

the upper bound of the confidence interval of the RMSD for most score points. 
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Figure 5. Asymptotic and sampling-based standard errors for the RMSD. 
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Figure 6 displays the asymptotic and sampling-based standard errors for the RMSD for 

the different sample sizes. For all sample sizes, both types of standard errors are very close to 

each other. A similar result was obtained for the REMSD; the asymptotic standard errors 

amounted to 0.10, 0.06, and 0.04 for sample sizes of 500, 1000, and 2500, respectively, and the 

sampling-based standard errors amounted to 0.12, 0.06, and 0.05. 

 

Figure 6. Asymptotic and sampling-based standard errors for the RMSD for different 

sample sizes.  

Discussion 

The purpose of this paper was to obtain and examine the standard errors of the RMSD 

and REMSD, two measures of population invariance of the equating function. Using the delta 

method, we derived the asymptotic standard errors of the RMSD and REMSD in the context of 
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linear equating in an EG equating design. In addition, we obtained sampling-based standard 

errors using a grouped jackknife procedure. Assessing the accuracy of the RMSD and the 

REMSD in this way is important in determining their reliability in drawing conclusions such as 

whether or not a particular equating function can be applied to the whole population or only to a 

subset of the population. 

Using a large dataset obtained from an operational administration of a licensure exam, the 

delta method and the grouped jackknife method both indicated that caution is merited when 

using RMSD and REMSD to conclude that an equating function is population-invariant. Even 

though both the RMSD and REMSD were consistently below the SDTM, when 95% confidence 

intervals were constructed for the RMSD, it exceeded the SDTM at most score points. 

The asymptotic standard errors of the delta method were very close to the sampling-based 

standard errors of the grouped jackknife method. Hence, sampling-based standard errors could be 

used as a viable alternative to asymptotic standard errors. This is an important result because the 

derivations for the delta method become quite tedious for designs more complex than the EG 

design and for equating functions more complex than the linear function. For sampling-based 

methods, these extensions are straightforward. 
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Appendix 

This appendix provides the entries for ( )fJ π , that is, the first derivatives of the RMSD 

and REMSD with respect to the parameters in the parameter vector π  (i.e., 0Xμ , 
2

0Xσ , 0Yμ , 

2
0Yσ , 1Xμ , 

2
1Xσ , 1Yμ , and 

2
1Yσ ). Specifically, first, two key pieces of the partial derivatives are 

obtained. These are the partial derivatives of Pe  and Pce  with respect to π . Next, using these 

key pieces, the partial derivatives of the RMSD are obtained. And finally, the partial derivatives 

of the REMSD are obtained. 

To begin, recall from (1) and (2) that the RMSD and REMSD were defined as 

( ) ( )
2

RMSD( )
c P Pc

c

XP

w e y e y

y
σ

⎡ ⎤−⎣ ⎦
=

∑
 

and 

( ) ( )
2

REMSD
c P P Pc

c

XP

w E e Y e Y

σ

⎧ ⎫⎡ ⎤−⎨ ⎬⎣ ⎦⎩ ⎭
=

∑
, 

respectively. Hence, to obtain the derivatives of the RMSD and REMSD with respect to π , the 

derivatives of the linear equating functions for the subgroups ( )Pce  and population ( Pe )  are also 

needed. 

For Pe , the means are obtained from the subpopulation means as 

* *
0 10 1XP X XP X Xw wμ μ= + Pμ , (A.1) 

which illustrates that the population mean is a sum of the weighted subgroup means and in which 

the weights ( *
0Xw  and *

1Xw ) are defined as the subgroup proportions in the population for test X. 

Additionally, 2
XPσ  is defined as 
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( )22 * 2 * 2 * *
0 0 1 1 0 1 0 1XP X XP X XP X X XP XPw w w wσ σ σ μ μ= + + −  (A.2) 

which illustrates that the population variance is the sum of the weighted subgroup variances and 

the weighted, squared difference between the subgroup means (Kolen, 1985). 

Similar relationships hold for test Y, but instead, *
0Xw  and *

1Xw  for test X are replaced 

with *
0Yw  and *

1Yw  for test Y, 2
Xσ  is replaced with 2

Yσ , and Xμ  is replaced with Yμ . 

Using these relationships, the partial derivatives of Pe  with respect to π  are 

( )* *
0 1 0 1 *

0
0

X X XP XPP Y
X

X XP Y

w we y w
μ μ μ

μ σ σ

⎛ ⎞− ⎛ ⎞∂ −⎜ ⎟= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

+ , (A.2) 

which can be simplified to  

( )* *
0 1 0 1 *

0
0

X X XP XPP
YP X

X XP

w we z w
μ μ

μ σ

⎛ ⎞−∂ ⎜ ⎟=
⎜ ⎟∂
⎝ ⎠

+ , (A.3) 

where 

YP
YP

YP

yz μ
σ
−

= , (A.4) 

( )* *
⎟
⎟

0 1 0 1 *
1

1

X X XP XPP
YP X

X XP

w we z w
μ μ

μ σ

⎛ ⎞−∂ ⎜= − +
⎜∂
⎝ ⎠

, (A.5) 

( )* * *0 1 0 1 0
2

0

XP Y Y YP YP XP YP
YP

Y YYP

w w we z
σ μ μ σ

μ σ

⎛ ⎞−∂ ⎜ ⎟= − −
⎜ ⎟∂
⎝ ⎠ Pσ , (A.6) 

( )* *
XP

Pσ
−

*0 1 0 1 1
2

1

XP YP YPP
YP

Y YYP

w we wz
σ μ μ σ

μ σ

⎛ ⎞−∂ ⎜ ⎟=
∂ ⎜ ⎟⎝ ⎠

, (A.7) 

*
0

2
0 2

XP
YP

XPXP

we z
σσ

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

, (A.8) 
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*
1

2
1 2

P X
YP

XPXP

e w z
σσ

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

, (A.9) 

*
0

2 2
0 2

Y XPP
YP

YP YP

we zσ
σ σ

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

, (A.10) 

and 

*
1

2 2
1 2

P Y XP
YP

YP YP

e w zσ
σ σ

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

. (A.11) 

For Pce , the partial derivatives with respect to π  are 

1Pc

XPc

e
μ
∂

=
∂ , (A.12) 

Pc XPc

YP YPcc

e σ
μ σ

= −
∂
∂

, (A.13) 

2
1

2
Pc

YPc
XPcXPc

e
z

σσ

⎛ ⎞∂
= ⎜ ⎟⎝ ⎠∂

, (A.14) 

2 22
Pc XPc

YPc
YPc YPc

e
z

σ
σ σ

⎛ ⎞∂
= −⎜ ⎟

∂ ⎝ ⎠
, (A.15) 

0 0 0 0
2 2

1 11 1
0P P P P

XP YP XP YPμ μ σ σ
= = =

∂ ∂ ∂ ∂

e e e e∂ ∂ ∂ ∂
= , (A.16) 

and 

1 1 1 1
2 2

0 00 0
0P P P P

XP YP XP YP

e e e e
μ μ σ σ
∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂

= . (A.17) 

Partial Derivatives of the RMSD With Respect to π  

Using the previously mentioned partial derivatives and the quotient and chain rules of 

derivations, the partial derivative of the RMSD with respect to 0Xμ  is obtained 
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( )

( ) ( ) ( ) ( )

0
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* *
0 1 0 1 *
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1  RMSD
RMSD

  ,
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X X XP XP

XPXP

X X XP XPc P P cc
YP X

XP XPc

w w

w ww e y e y
I z

μ

μ μ

σσ

μ μ

σ σ

∂
=

∂

⎛ ⎞− ⎛ ⎞⎜ ⎟− + ×⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎡ ⎤

w
⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤ −−⎣ ⎦⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥ × − −⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦⎣ ⎦

∑

 (A.18) 

where ( )c
cI ′  is a dummy variable, in which the subscript c′  is a dummy coded symbol for the 

subgroup for which the function is being derived and the superscript c is a dummy coded symbol 

for the subgroup considered in the summation. That is, define 

( ) 0 if 
1 if 

c
c

c c
I

c c′
≠ ′⎧

= ⎨ = ′⎩
. (A.19) 

To simplify the expression, let  

1
RMSD

Φ ≡ . (A.20) 

Another way to conceptualize Φ  is as the similarity between the subpopulation linking functions 

and the overall linking function across the score scale. 

Additionally, define the weighted, standardized difference between the equating 

functions for subpopulation c and the total population as ( )cΔ  

( ) ( )c P Pc
c

XP

w e y e y

σ

⎡ ⎤−⎣Δ ≡ ⎦ . (A.21) 

Substituting (A.20)-(A.21) into (A.18) yields the following 
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( ) ( )
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⎛ ⎞− ⎛ ⎞∂ Φ⎜ ⎟= − + ×⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
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⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
∑ P Xw

 (A.22) 

which illustrates that the derivative of the RMSD is primarily a function of the RMSD itself; 

relative sample proportion ; the precision of the equating functions ( )Φ ; the weighted, 

standardized difference between the equating functions ( )cΔ ; and the standardized scores on the 

form that is being equated ( )Yz . 

Using a similar approach, the following partial derivatives are also obtained: 

( )

( ) ( )

* *
0 1 0 1

2
1

* *
0 1 0 1 *
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RMSD RMSD   

                  ,

X X XP XP

XP XPXP

X X XP XPc
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σ

⎛ ⎞− ⎛ ⎞∂ Φ⎜ ⎟= + ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
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⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦
∑ P Xw
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 (A.23) 
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μ σ

σ μ μσ σ
σ σσ

⎛ ⎞∂ Φ
= ×⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎡ ⎤⎛ ⎞−−⎢ ⎥⎢ ⎥⎜ ⎟Δ × + +⎢ ⎥⎢ ⎥⎜ ⎟
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∑ P

 (A.24) 
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XP Y Y YP YPc XP XP Y
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σ σσ
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= ×⎜ ⎟∂ ⎝ ⎠
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 (A.25) 
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YPX X
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XP XP XPcXP XP

I zw w
σ σσ σ

0 YPz
σ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞∂ Φ ⎢ ⎥⎢ ⎥= − + × Δ × −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥∂ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦⎣ ⎦
∑  (A.26) 
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YPX X
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I zw w
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1 YPz
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∑  (A.27) 
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∑  (A.28) 

and 
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∑  (A.29) 

Partial Derivatives of the REMSD With Respect to π  

Similarly, and again using the previously mentioned partial derivatives, the quotient and 

chain rules of derivations, and the rules of expectations, the partial derivative of the REMSD 

with respect to 0Xμ  is  
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⎡ ⎤⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟Δ × − −⎨ ⎬⎢ ⎥⎢ ⎥⎜ ⎟⎪ ⎪⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭⎣ ⎦

∑
 (A.30) 

To simplify the expression, define Ψ  as the inverse of the REMSD 

1
REMSD

Ψ ≡ , (A.31) 

which can be conceptualized as the expectation of the similarity between the subpopulation 

linking functions and the overall linking function across the score scale. 

Substituting (A.31) into (A.30) yields 
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 (A.32) 

Using a similar approach, the following partial derivatives of the REMSD are also 

obtained: 
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